A Brief Introduction to Continuous Evolutionary Optimization



de

Éditeur :

Springer


Collection :

SpringerBriefs in Applied Sciences and Technology

Paru le : 2013-12-04



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
52,74

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

Practical optimization problems are often hard to solve, in particular when they are black boxes and no further information about the problem is available except via function evaluations. This work introduces a collection of heuristics and algorithms for black box optimization with evolutionary algorithms in continuous solution spaces. The book gives an introduction to evolution strategies and parameter control. Heuristic extensions are presented that allow optimization in constrained, multimodal and multi-objective solution spaces. An adaptive penalty function is introduced for constrained optimization. Meta-models reduce the number of fitness and constraint function calls in expensive optimization problems. The hybridization of evolution strategies with local search allows fast optimization in solution spaces with many local optima. A selection operator based on reference lines in objective space is introduced to optimize multiple conflictive objectives. Evolutionary search is employed for learning kernel parameters of the Nadaraya-Watson estimator and a swarm-based iterative approach is presented for optimizing latent points in dimensionality reduction problems. Experiments on typical benchmark problems as well as numerous figures and diagrams illustrate the behavior of the introduced concepts and methods.
Pages
94 pages
Collection
SpringerBriefs in Applied Sciences and Technology
Parution
2013-12-04
Marque
Springer
EAN papier
9783319034218
EAN EPUB
9783319034225

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
9
Taille du fichier
1659 Ko
Prix
52,74 €