Feature Learning and Understanding

Algorithms and Applications de

, , ,

Éditeur :

Springer


Collection :

Information Fusion and Data Science

Paru le : 2020-04-03

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
137,14

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book covers the essential concepts and strategies within traditional and cutting-edge feature learning methods thru both theoretical analysis and case studies. Good features give good models and it is usually not classifiers but features that determine the effectiveness of a model. In this book, readers can find not only traditional feature learning methods, such as principal component analysis, linear discriminant analysis, and geometrical-structure-based methods, but also advanced feature learning methods, such as sparse learning, low-rank decomposition, tensor-based feature extraction, and deep-learning-based feature learning. Each feature learning method has its own dedicated chapter that explains how it is theoretically derived and shows how it is implemented for real-world applications. Detailed illustrated figures are included for better understanding. This book can be used by students, researchers, and engineers looking for a reference guide for popular methods of feature learning and machine intelligence.
Pages
291 pages
Collection
Information Fusion and Data Science
Parution
2020-04-03
Marque
Springer
EAN papier
9783030407933
EAN PDF
9783030407940

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
29
Taille du fichier
10271 Ko
Prix
137,14 €
EAN EPUB
9783030407940

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
29
Taille du fichier
36669 Ko
Prix
137,14 €