Augmenting Neurological Disorder Prediction and Rehabilitation Using Artificial Intelligence



de

,

Éditeur :

Academic Press


Paru le : 2022-02-23



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈 ebook sans DRM
Lecture en ligne (streaming)
168,80

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
Augmenting Neurological Disorder Prediction and Rehabilitation Using Artificial Intelligence focuses on how the neurosciences can benefit from advances in AI, especially in areas such as medical image analysis for the improved diagnosis of Alzheimer's disease, early detection of acute neurologic events, prediction of stroke, medical image segmentation for quantitative evaluation of neuroanatomy and vasculature, diagnosis of Alzheimer's Disease, autism spectrum disorder, and other key neurological disorders. Chapters also focus on how AI can help in predicting stroke recovery, and the use of Machine Learning and AI in personalizing stroke rehabilitation therapy. Other sections delve into Epilepsy and the use of Machine Learning techniques to detect epileptogenic lesions on MRIs and how to understand neural networks. - Provides readers with an understanding on the key applications of artificial intelligence and machine learning in the diagnosis and treatment of the most important neurological disorders - Integrates recent advancements of artificial intelligence and machine learning to the evaluation of large amounts of clinical data for the early detection of disorders such as Alzheimer's Disease, autism spectrum disorder, Multiple Sclerosis, headache disorder, Epilepsy, and stroke - Provides readers with illustrative examples of how artificial intelligence can be applied to outcome prediction, neurorehabilitation and clinical exams, including a wide range of case studies in predicting and classifying neurological disorders
Pages
362 pages
Collection
n.c
Parution
2022-02-23
Marque
Academic Press
EAN papier
9780323900379
EAN PDF
9780323886260

Informations sur l'ebook
Nombre pages copiables
36
Nombre pages imprimables
36
Taille du fichier
5396 Ko
Prix
168,80 €
EAN EPUB SANS DRM
9780323886260

Prix
168,80 €

Suggestions personnalisées