Graph Learning for Fashion Compatibility Modeling

de

, , ,

Éditeur :

Springer


Paru le : 2022-11-02

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
63,29

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
This book sheds light on state-of-the-art theories for more challenging outfit compatibility modeling scenarios.  In particular, this book presents several cutting-edge graph learning techniques that can be used for outfit compatibility modeling.  Due to its remarkable economic value, fashion compatibility modeling has gained increasing research attention in recent years.  Although great efforts have been dedicated to this research area, previous studies mainly focused on fashion compatibility modeling for outfits that only involved two items and overlooked the fact that each outfit may be composed of a variable number of items.  This book develops a series of graph-learning based outfit compatibility modeling schemes, all of which have been proven to be effective over several public real-world datasets.  This systematic approach benefits readers by introducing the techniques for compatibility modeling of outfits that involve a variable number of composing items.  To deal with the challenging task of outfit compatibility modeling, this book provides comprehensive solutions, including correlation-oriented graph learning, modality-oriented graph learning, unsupervised disentangled graph learning, partially supervised disentangled graph learning, and metapath-guided heterogeneous graph learning.  Moreover, this book sheds light on research frontiers that can inspire future research directions for scientists and researchers.  
Pages
112 pages
Collection
n.c
Parution
2022-11-02
Marque
Springer
EAN papier
9783031188169
EAN PDF
9783031188176

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
11
Taille du fichier
3308 Ko
Prix
63,29 €
EAN EPUB
9783031188176

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
11
Taille du fichier
17930 Ko
Prix
63,29 €

Suggestions personnalisées