AI-ML for Decision and Risk Analysis

Challenges and Opportunities for Normative Decision Theory

de

Éditeur :

Springer


Paru le : 2023-07-05



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
200,44

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book explains and illustrates recent developments and advances in decision-making and risk analysis. It demonstrates how artificial intelligence (AI) and machine learning (ML) have not only benefitted from classical decision analysis concepts such as expected utility maximization but have also contributed to making normative decision theory more useful by forcing it to confront realistic complexities. These include skill acquisition, uncertain and time-consuming implementation of intended actions, open-world uncertainties about what might happen next and what consequences actions can have, and learning to cope effectively with uncertain and changing environments. The result is a more robust and implementable technology for AI/ML-assisted decision-making.
The book is intended to inform a wide audience in related applied areas and to provide a fun and stimulating resource for students, researchers, and academics in data science and AI-ML, decision analysis, and other closely linked academic fields. It will also appeal to managers, analysts, decision-makers, and policymakers in financial, health and safety, environmental, business, engineering, and security risk management.





Pages
433 pages
Collection
n.c
Parution
2023-07-05
Marque
Springer
EAN papier
9783031320125
EAN PDF
9783031320132

Informations sur l'ebook
Nombre pages copiables
4
Nombre pages imprimables
43
Taille du fichier
7864 Ko
Prix
200,44 €
EAN EPUB
9783031320132

Informations sur l'ebook
Nombre pages copiables
4
Nombre pages imprimables
43
Taille du fichier
6994 Ko
Prix
200,44 €

Louis Anthony Cox Jr. is a Professor of Business Analytics at the University of Colorado, USA; Chief Digital Intelligence Officer at Entanglement, Inc.; and President of Cox Associates, a Denver-based applied research company specializing in artificial intelligence and machine learning; health, safety, and environmental risk analysis; epidemiology; policy analytics; data science; and operations research. Dr. Cox is Editor-in-Chief of Risk Analysis: An International Journal. He is a member of the National Academy of Engineering, a Fellow of the Institute for Operations Research and Management Science (INFORMS), and a Fellow of the Society for Risk Analysis (SRA). He has authored and co-authored over 200 journal articles and numerous books and chapters in these fields. He holds over a dozen US patents on applications of artificial intelligence, signal processing, statistics, and operations research in telecommunications. His current research interestsinclude computational statistical methods for causal inference in public health risk analysis, data mining, and advanced analytics for risk management, business, and public policy applications.

Suggestions personnalisées