Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems

de

,

Éditeur :

Springer


Paru le : 2023-09-01

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
116,04

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book provides comprehensive coverage of various solutions that address issues related to real-time performance, security, and robustness in emerging automotive platforms. The authors discuss recent advances towards the goal of enabling reliable, secure, and robust, time-critical automotive cyber-physical systems, using advanced optimization and machine learning techniques. The focus is on presenting state-of-the-art solutions to various challenges including real-time data scheduling, secure communication within and outside the vehicle, tolerance to faults, optimizing the use of resource-constrained automotive ECUs, intrusion detection, and developing robust perception and control techniques for increasingly autonomous vehicles.

Pages
789 pages
Collection
n.c
Parution
2023-09-01
Marque
Springer
EAN papier
9783031280153
EAN PDF
9783031280160

Informations sur l'ebook
Nombre pages copiables
7
Nombre pages imprimables
78
Taille du fichier
33137 Ko
Prix
116,04 €
EAN EPUB
9783031280160

Informations sur l'ebook
Nombre pages copiables
7
Nombre pages imprimables
78
Taille du fichier
100854 Ko
Prix
116,04 €

Suggestions personnalisées