Materials Informatics I

Methods de

,

Éditeur :

Springer


Paru le : 2025-04-02

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
252,14

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This contributed volume explores the integration of machine learning and cheminformatics within materials science, focusing on predictive modeling techniques. It begins with foundational concepts in materials informatics and cheminformatics, emphasizing quantitative structure-property relationships (QSPR). The volume then presents various methods and tools, including advanced QSPR models, quantitative read-across structure-property relationship (q-RASPR) models, optimization strategies with minimal data, and in silico studies using different descriptors. Additionally, it explores machine learning algorithms and their applications in materials science, alongside innovative modeling approaches for quantum-theoretic properties. Overall, the book serves as a comprehensive resource for understanding and applying machine learning in the study and development of advanced materials and is a useful tool for students, researchers and professionals working in these areas.
Pages
288 pages
Collection
n.c
Parution
2025-04-02
Marque
Springer
EAN papier
9783031787355
EAN PDF
9783031787362

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
28
Taille du fichier
14582 Ko
Prix
252,14 €
EAN EPUB
9783031787362

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
28
Taille du fichier
28457 Ko
Prix
252,14 €

Suggestions personnalisées