Adversarial Machine Learning

Mechanisms, Vulnerabilities, and Strategies for Trustworthy AI

de

Éditeur :

Wiley


Paru le : 2026-01-06



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
85,45

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

Enables readers to understand the full lifecycle of adversarial machine learning (AML) and how AI models can be compromised
Adversarial Machine Learning is a definitive guide to one of the most urgent challenges in artificial intelligence today: how to secure machine learning systems against adversarial threats.
This book explores the full lifecycle of adversarial machine learning (AML), providing a structured, real-world understanding of how AI models can be compromised—and what can be done about it.
The book walks readers through the different phases of the machine learning pipeline, showing how attacks emerge during training, deployment, and inference. It breaks down adversarial threats into clear categories based on attacker goals—whether to disrupt system availability, tamper with outputs, or leak private information. With clarity and technical rigor, it dissects the tools, knowledge, and access attackers need to exploit AI systems.
In addition to diagnosing threats, the book provides a robust overview of defense strategies—from adversarial training and certified defenses to privacy-preserving machine learning and risk-aware system design. Each defense is discussed alongside its limitations, trade-offs, and real-world applicability.
Readers will gain a comprehensive view of today???s most dangerous attack methods including: Evasion attacks that manipulate inputs to deceive AI predictions Poisoning attacks that corrupt training data or model updates Backdoor and trojan attacks that embed malicious triggers Privacy attacks that reveal sensitive data through model interaction and prompt injection Generative AI attacks that exploit the new wave of large language models
Blending technical depth with practical insight, Adversarial Machine Learning equips developers, security engineers, and AI decision-makers with the knowledge they need to understand the adversarial landscape and defend their systems with confidence.
Pages
400 pages
Collection
n.c
Parution
2026-01-06
Marque
Wiley
EAN papier
9781394402038
EAN PDF
9781394402052

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
400
Taille du fichier
3584 Ko
Prix
85,45 €
EAN EPUB
9781394402045

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
400
Taille du fichier
2191 Ko
Prix
85,45 €

Suggestions personnalisées