Analyse fondamentale - Espaces métriques, topologieques et normés. Avec exercices

de

Éditeur :

Hermann


Collection :

Méthodes

Paru le : 2011-01-24

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
Prix papier : 34,50 € Économisez 7,51€ (-22%)
26,99

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
Ce livre d’analyse est destiné aux étudiants de troisième année de licence de mathématiques. L’auteur traite des connaissances fondamentales sur les espaces métriques et normés, accompagnées toutefois d’informations concises sur l'histoire des concepts et sur les développements récents. Plusieurs aspects sont traités de façon originale, motivée par la recherche de l’auteur (le traitement des suites ou le calcul relationnel). Deux appendices permettent aux étudiants motivés d'approfondir quelques sujets importants (nombres ordinaux, compacité) au-delà du cadre de la licence. Une esquisse de la théorie des ensembles consentira l'utilisation des concepts de relation et de cardinalité. Ensuite, on procède à partir d'une unique abstraction qui nous transporte du cadre des espaces euclidiens, familiers aux étudiants de la Licence 2, dans le domaine des espaces métriques, dont on étudie des classes principales (espaces séparables, compacts, complets et connexes), en découvrant des espaces universels, dont tout espace métrique (respectivement, métrique séparable) est un sous-espace, ou d'autres (ensemble de Cantor), dont tout espace métrique compact est une image continue. L'abstraction de la structure vectorielle permet d'étudier les espaces métriques avec beaucoup plus d'aisance qu'avec des contraintes supplémentaires d'une autre structure. On étudie ensuite les espaces vectoriels avant de les munir des métriques compatibles avec leur structure vectorielle (espaces normés) et d'y ajouter la complétude (espaces de Banach), en profitant des acquis de l'étude des espaces métriques complets. On se focalise enfin sur la classe des espaces munis de produit scalaire qui les rendent complets (espaces de Hilbert), où la notion d'orthogonalité nous approche de nos intuitions initiales des espaces euclidiens, en concluant à l'universalité (parmi les espaces de Hilbert) de l'espace des fonctions carré-sommables.
Pages
190 pages
Collection
Méthodes
Parution
2011-01-24
Marque
Hermann
EAN papier
9782705680824
EAN PDF
9782705677459

Informations sur l'ebook
Nombre pages copiables
19
Nombre pages imprimables
95
Taille du fichier
7506 Ko
Prix
26,99 €