Multimodal Optimization by Means of Evolutionary Algorithms

de

Éditeur :

Springer


Collection :

Natural Computing Series

Paru le : 2015-11-27

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
94,94

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book offers the first comprehensive taxonomy for multimodal optimization algorithms, work with its root in topics such as niching, parallel evolutionary algorithms, and global optimization.
The author explains niching in evolutionary algorithms and its benefits; he examines their suitability for use as diagnostic tools for experimental analysis, especially for detecting problem (type) properties; and he measures and compares the performances of niching and canonical EAs using different benchmark test problem sets. His work consolidates the recent successes in this domain, presenting and explaining use cases, algorithms, and performance measures, with a focus throughout on the goals of the optimization processes and a deep understanding of the algorithms used.
The book will be useful for researchers and practitioners in the area of computational intelligence, particularly those engaged with heuristic search, multimodal optimization, evolutionary computing, and experimental analysis.
Pages
189 pages
Collection
Natural Computing Series
Parution
2015-11-27
Marque
Springer
EAN papier
9783319074061
EAN PDF
9783319074078

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
18
Taille du fichier
6359 Ko
Prix
94,94 €