Mod-? Convergence

Normality Zones and Precise Deviations de

, ,

Éditeur :

Springer


Collection :

SpringerBriefs in Probability and Mathematical Statistics

Paru le : 2016-12-06

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
52,74

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

The canonical way to establish the central limit theorem for i.i.d. random variables is to use characteristic functions and Lévy’s continuity theorem. This monograph focuses on this characteristic function approach and presents a renormalization theory called mod-? convergence. This type of convergence is a relatively new concept with many deep ramifications, and has not previously been published in a single accessible volume. The authors construct an extremely flexible framework using this concept in order to study limit theorems and large deviations for a number of probabilistic models related to classical probability, combinatorics, non-commutative random variables, as well as geometric and number-theoretical objects. 
Intended for researchers in probability theory, the text is carefully well-written and well-structured, containing a great amount of detail and interesting examples. 

Pages
152 pages
Collection
SpringerBriefs in Probability and Mathematical Statistics
Parution
2016-12-06
Marque
Springer
EAN papier
9783319468211
EAN PDF
9783319468228

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
15
Taille du fichier
2621 Ko
Prix
52,74 €
EAN EPUB
9783319468228

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
15
Taille du fichier
1905 Ko
Prix
52,74 €