Stable Non-Gaussian Self-Similar Processes with Stationary Increments

de

,

Éditeur :

Springer


Collection :

SpringerBriefs in Probability and Mathematical Statistics

Paru le : 2017-08-31

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
52,74

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book provides a self-contained presentation on the structure of a large class of stable processes, known as self-similar mixed moving averages.  The authors present a way to describe and classify these processes by relating them to so-called deterministic flows.  The first sections in the book review random variables, stochastic processes, and integrals, moving on to rigidity and flows, and finally ending with mixed moving averages and self-similarity.  In-depth appendices are also included.

This book is aimed at graduate students and researchers working in probability theory and statistics.
Pages
135 pages
Collection
SpringerBriefs in Probability and Mathematical Statistics
Parution
2017-08-31
Marque
Springer
EAN papier
9783319623306
EAN PDF
9783319623313

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
13
Taille du fichier
2263 Ko
Prix
52,74 €
EAN EPUB
9783319623313

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
13
Taille du fichier
2284 Ko
Prix
52,74 €