eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
169,39

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
This comprehensive text/reference presents a broad review of diverse domain adaptation (DA) methods for machine learning, with a focus on solutions for visual applications. The book collects together solutions and perspectives proposed by an international selection of pre-eminent experts in the field, addressing not only classical image categorization, but also other computer vision tasks such as detection, segmentation and visual attributes.
Topics and features: surveys the complete field of visual DA, including shallow methods designed for homogeneous and heterogeneous data as well as deep architectures; presents a positioning of the dataset bias in the CNN-based feature arena; proposes detailed analyses of popular shallow methods that addresses landmark data selection, kernel embedding, feature alignment, joint feature transformation and classifier adaptation, or the case of limited access to the source data; discusses more recent deep DA methods, including discrepancy-based adaptation networks and adversarial discriminative DA models; addresses domain adaptation problems beyond image categorization, such as a Fisher encoding adaptation for vehicle re-identification, semantic segmentation and detection trained on synthetic images, and domain generalization for semantic part detection; describes a multi-source domain generalization technique for visual attributes and a unifying framework for multi-domain and multi-task learning.







This authoritative volume will be of great interest to a broad audience ranging from researchers and practitioners, to students involved in computer vision, pattern recognition and machine learning.
Pages
344 pages
Collection
Advances in Computer Vision and Pattern Recognition
Parution
2017-09-10
Marque
Springer
EAN papier
9783319583464
EAN PDF
9783319583471

Informations sur l'ebook
Nombre pages copiables
3
Nombre pages imprimables
34
Taille du fichier
14684 Ko
Prix
169,39 €
EAN EPUB
9783319583471

Informations sur l'ebook
Nombre pages copiables
3
Nombre pages imprimables
34
Taille du fichier
7475 Ko
Prix
169,39 €