Approximation Methods for Polynomial Optimization

Models, Algorithms, and Applications de

, ,

Éditeur :

Springer


Collection :

SpringerBriefs in Optimization

Paru le : 2012-07-25

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
49,57

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

Polynomial optimization have been a hot research topic for the past few years and its applications range from Operations Research, biomedical engineering, investment science, to quantum mechanics, linear algebra, and signal processing, among many others. In this brief the authors discuss some important subclasses of polynomial optimization models arising from various applications, with a focus on approximations algorithms with guaranteed worst case performance analysis. The brief presents a clear view of the basic ideas underlying the design of such algorithms and the benefits are highlighted by illustrative examples showing the possible applications.
 
This timely treatise will appeal to researchers and graduate students in the fields of optimization, computational mathematics, Operations Research, industrial engineering, and computer science.
Pages
124 pages
Collection
SpringerBriefs in Optimization
Parution
2012-07-25
Marque
Springer
EAN papier
9781461439837
EAN EPUB
9781461439844

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
12
Taille du fichier
24822 Ko
Prix
49,57 €