Stability of Functional Equations in Random Normed Spaces

de

, ,

Éditeur :

Springer


Collection :

Springer Optimization and Its Applications

Paru le : 2013-08-27

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
52,74

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book discusses the rapidly developing subject of mathematical analysis that deals primarily with stability of functional equations in generalized spaces. The fundamental problem in this subject was proposed by Stan M. Ulam in 1940 for approximate homomorphisms. The seminal work of Donald H. Hyers in 1941 and that of Themistocles M. Rassias in 1978 have provided a great deal of inspiration and guidance for mathematicians worldwide to investigate this extensive domain of research.
The book presents a self-contained survey of recent and new results on topics including basic theory of random normed spaces and related spaces; stability theory for new function equations in random normed spaces via fixed point method, under both special and arbitrary t-norms; stability theory of well-known new functional equations in non-Archimedean random normed spaces; and applications in the class of fuzzy normed spaces. It contains valuable results on stability in random normed spaces, and is geared toward both graduate students and research mathematicians and engineers in a broad area of interdisciplinary research.
Pages
246 pages
Collection
Springer Optimization and Its Applications
Parution
2013-08-27
Marque
Springer
EAN papier
9781461484769
EAN EPUB
9781461484776

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
24
Taille du fichier
3318 Ko
Prix
52,74 €